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Signalling Pathways

Eikuch, 2007
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Differential models



dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4)
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− (k3 · x4 − k−3 · x5)
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

− do not describe the structure of molecules;
− combinatorial explosion: forces choices that are not principled;
− a nightmare to modify.
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A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
+ documented and detailed description
+ transparent description
− cannot be interpreted

2. ODE-based models
+ can be integrated
− opaque modelling process, models can hardly be modified
− there are also some scalability issues.
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

• the observation level
• and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.
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Semantics

Several semantics (qualititative and/or quantitative) can be defined.
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dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4)
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− (k3 · x4 − k−3 · x5)
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

ODEs
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dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4)
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− (k3 · x4 − k−3 · x5)
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

ODEs
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Complexity walls
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A breach in the wall(s) ?
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A simple adapter

A C

B
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d



d[A]
dt

= kAB
d · ([AB∅] + [ABC]) − [A]·kAB· ([∅B∅] + [∅BC])

d[C]
dt

= kBC
d · ([∅BC] + [ABC]) − [C]·kBC· ([∅B∅] + [AB∅])

d[∅B∅]
dt

= kAB
d ·[AB∅] + kBC

d ·[∅BC] − [∅B∅]· ([A]·kAB + [C]·kBC)
d[AB∅]
dt

= [A]·kAB·[∅B∅] + kBC
d ·[ABC] − [AB∅]· (kAB

d + [C]·kBC)
d[∅BC]
dt

= kAB
d ·[ABC] + [C]·kBC·[∅B∅] − [∅BC]· (kBC

d + [A]·kAB)
d[ABC]
dt

= [A]·kAB·[∅BC] + [C]·kBC·[AB∅] − [ABC]· (kAB
d + kBC

d )
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Two subsystems

A C

B
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Two subsystems
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[AB?] ∆= [AB∅] + [ABC]

[∅B?] ∆= [∅B∅] + [∅BC]
d[A]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

d[AB?]
dt

= [A]·kAB·[∅B?] − kAB
d ·[AB?]

d[∅B?]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

[?BC]
∆
= [∅BC] + [ABC]

[?B∅] ∆= [∅B∅] + [AB∅]
d[C]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]

d[?BC]
dt

= [C]·kBC·[?B∅] − kBC
d ·[?BC]

d[?B∅]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]
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Dependence index
We introduce:

[?B?] ∆= [?B∅] + [?BC].

The binding with A and with C would be independent if, and only if:

[ABC]

[?BC]
=

[AB?]
[?B?]

.

Thus we define the dependence index as follows:

X
∆
= [ABC]·[?B?] − [AB?]·[?BC].

We have (after a short computation):
dX

dt
= −X·

(
[A]·kAB + kAB

d + [C]·kBC + kBC
d

)
So the property:

[ABC] =
[AB?]·[?BC]

[?B?]
is an invariant (i.e. if it holds at time t, it holds at any time t ′ ≥ t).
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A system with a switch
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A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr
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A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr

d[(u,u,u)]
dt

= −kc·[(u,u,u)]
d[(u,p,u)]

dt
= −kl·[(u,p,u)] + kc·[(u,u,u)] − kr·[(u,p,u)]

d[(u,p,p)]
dt

= −kl·[(u,p,p)] + kr·[(u,p,u)]
d[(p,p,u)]

dt
= kl·[(u,p,u)] − kr·[(p,p,u)]

d[(p,p,p)]
dt

= kl·[(u,p,p)] + kr·[(p,p,u)]
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Two subsystems
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Two subsystems
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Two subsystems

[(u,p,?)] ∆= [(u,p,u)] + [(u,p,p)]

[(p,p,?)] ∆= [(p,p,u)] + [(p,p,p)]


d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(u,p,?)]
dt

= −kl·[(u,p,?)] + kc·[(u,u,u)]
d[(p,p,?)]

dt
= kl·[(u,p,?)]

[(?,p,u)] ∆= [(u,p,u)] + [(p,p,u)]

[(?,p,p)] ∆= [(u,p,p)] + [(p,p,p)]


d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(?,p,u)]
dt

= −kr·[(?,p,u)] + kc·[(u,u,u)]
d[(?,p,p)]

dt
= kr·[(?,p,u)]
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Dependence index
We introduce:

[(?,p,?)] ∆= [(?,p,u)] + [(?,p,p)]

The states of left site and right site would be independent if, and only if:

[(p,p,p)]
[(p,p,?)]

=
[(?,p,p)]
[(?,p,?)]

.

Thus we define the dependence index as follows:

X
∆
= [(p,p,p)]·[(?,p,?)] − [(?,p,p)]·[(p,p,?)].

We have (after a short computation):

dX

dt
= −X ·

(
kl + kr

)
+ kc·[(p,p,p)]·[(u,u,u)].

As a consequence, the property X = 0 is not an invariant.
We can split the system into two subsystems,
but we cannot recombine both subsystems without errors.
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Erroneous recombination
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)
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Conclusion
• Independence:

+ the transformation is invertible:
we can recover the concentration of any species;

− it is a strong property
which is hard to prove,
which is hardly ever satisfied.

• Self-consistency:
− some information is abstracted away

we cannot recover the concentration of any species;
+ it is a weak property

which is easy to ensure,
which is easy to propagate;

+ it captures the essence of the kinetics of systems.
We are going to track the correlations that are read by the system.
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A model with symmetries

k1 k1

P −→ ?P k1 P? −→ ?P? k1
P −→ P? k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Reduced model

2·k1

P −→ ?P 2·k1

k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Continuous differential semantics
Let V, be a finite set of variables;
and F, be a C∞ mapping from V → R+ into V → R,
as for instance,

• V ∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]},

• F(ρ) ∆
=



[(u,u,u)] 7→ −kc·ρ([(u,u,u)])
[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])
[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])
[(p,p,u)] 7→ kl·ρ([(u,p,u)]) − kr·ρ([(p,p,u)])
[(p,p,p)] 7→ kl·ρ([(u,p,p)]) + kr·ρ([(p,p,u)]).

The continuous semantics maps each initial state X0 ∈ V → R+ to the maxi-
mal solution XX0 ∈ [0, Tmax

X0
[→ (V → R+) which satisfies:

XX0(T) = X0 +

∫ T
t=0

F(XX0(t))·dt.

Jérôme Feret 27 Monday, July the 11th



Overview

1. Context and motivations

2. Handmade ODEs

3. Abstract interpretation framework

(a) Concrete semantics
(b) Abstraction
(c) Bisimulation
(d) Combination

4. Kappa

5. Concrete semantics

6. Abstract semantics

7. Conclusion

Jérôme Feret 28 Monday, July the 11th



Abstraction
An abstraction (V ], ψ,F]) is given by:
• V ]: a finite set of observables,
• ψ: a mapping from V → R into V ] → R,
• F]: a C∞ mapping from V ] → R+ into V ] → R;

such that:
• ψ is linear with positive coefficients,

and for any sequence (xn) ∈ (V → R+)N such that (||xn||) diverges
towards +∞, then (||ψ(xn)||

]) diverges as well
(for arbitrary norms || · || and || · ||]),
• F] is ψ-complete, i.e. the following diagram commutes:

(V → R+)
F

−→ (V → R)

ψ

y yψ
`∗ `∗

(V ] → R+)
F]
−→ (V ] → R)

i.e. ψ ◦ F = F] ◦ψ.
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Abstraction example
• V ∆

= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]}

• F(ρ) ∆
=


[(u,u,u)] 7→ −kc·ρ([(u,u,u)])
[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])
[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])
· · ·

• V ] ∆= {[(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)]}

• ψ(ρ) ∆
=


[(u,u,u)] 7→ ρ([(u,u,u)])
[(?,p,u)] 7→ ρ([(u,p,u)]) + ρ([(p,p,u)])
[(?,p,p)] 7→ ρ([(u,p,p)]) + ρ([(p,p,p)])
. . .

• F](ρ])
∆
=


[(u,u,u)] 7→ −kc·ρ]([(u,u,u)])
[(?,p,u)] 7→ −kr·ρ]([(?,p,u)]) + kc·ρ]([(u,u,u)])
[(?,p,p)] 7→ kr·ρ]([(?,p,u)])
. . .

(Completeness can be checked analytically.)
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Abstract continuous trajectories
Let (V,F) be a concrete system;
Let (V ], ψ,F]) be an abstraction of the concrete system (V,F);
Let X0 ∈ V → R+ be an initial (concrete) state.
We know that the following system:

Yψ(X0)(T) = ψ(X0) +

∫ T
t=0

F]
(
Yψ(X0)(t)

)
·dt

has a unique maximal solution Yψ(X0) such that Yψ(X0) = ψ(X0).

Theorem 1 Moreover, this solution is the projection of the maximal solution
XX0 of the system

XX0(T) = X0 +

∫ T
t=0

F
(
XX0(t)

)
·dt,

which satisfies XX0(0) = X0.
(ie Yψ(X0) = ψ(XX0))
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Abstract continuous trajectories
Proof sketch

Given an abstraction (V ], ψ,F]), we have:

XX0(T) = X0 +
∫T
t=0F

(
XX0(t)

)
·dt

ψ
(
XX0(T)

)
= ψ

(
X0 +

∫T
t=0F

(
XX0(t)

)
·dt
)

ψ
(
XX0(T)

)
= ψ(X0) +

∫T
t=0[ψ ◦ F]

(
XX0(t)

)
·dt (ψ is linear)

ψ
(
XX0(T)

)
= ψ(X0) +

∫T
t=0F

]
(
ψ
(
XX0(t)

))
·dt (F] is ψ-complete)

We set Y0
∆
= ψ(X0) and YY0

∆
= ψ ◦ XX0.

Then we have:
YY0(T) = Y0 +

∫T
t=0F

]
(
YY0(t)

)
·dt

The assumption about || · ||, || · ||], and ψ ensures that ψ ◦ XX0 is a maximal
solution.
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Fluid trajectories

t

Y(t)
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Fluid trajectories

t

Y(t)

X(t)
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A model with symmetries

k1 k1

P −→ ?P k1 P? −→ ?P? k1
P −→ P? k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Differential equations

• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

−2·k1 0 0 0

2·k1 −k1 0 0

0 0 0 0

0 k1 0 −k2

·
 P

?P + P?

0
?P?
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Differential equations
• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

1 0 0 00 1 1 0

0 0 0 0

0 0 0 1


︸ ︷︷ ︸

P

·

−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2

·
1 0 0 00 1 0 0

0 0 0 0

0 0 0 1


︸ ︷︷ ︸

Z

·

 P
?P + P?

0
?P?
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Pair of projections induced by an
equivalence relation among variables

Let r be an idempotent mapping from V to V.
We define two linear projections Pr, Zr ∈ (V → R+)→ (V → R+) by:

• Pr(ρ)(V) =

{∑
{ρ(V ′) | r(V ′) = r(V)} when V = r(V)

0 when V 6= r(V);

• Zr(ρ) =

{
V 7→ ρ(V) when V = r(V)

V 7→ 0 when V 6= r(V).
We notice that the following diagram commutes:

Pr

Zr
`?

`?

`
Pr
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Induced bisimulation

The mapping r induces a bisimulation,
∆⇐⇒

for any σ, σ ′ ∈ V → R+, Pr(σ) = Pr(σ ′) =⇒ Pr(F(σ)) = Pr(F(σ ′)).

Indeed the mapping r induces a bisimulation,⇐⇒
for any σ ∈ V → R+, Pr(F(σ)) = Pr(F(Pr(σ))).

F

Pr

Pr
Pr

F
`?

`?

`?
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Induced abstraction

Under these assumptions (r(V), Pr, Pr ◦ F ◦ Zr) is an abstraction of (V,F):

As proved in the following commutative diagram:

Zr F Pr

Pr

F

Pr Pr

`? `?
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Abstract projection

We assume that we are given:

• a concrete system (V,F);
• an abstraction (V ], ψ,F]) of (V,F) (I);

• an idempotent mapping r over V which
induces a bisimulation (II);

• an idempotent mapping r] over V ] (III);

such that: ψ ◦ Pr = Pr] ◦ψ (IV).

ψI

`?

F]

F

ψ

`?

F

Pr

Pr
Pr

F

II

`?

`?

`?

Pr]

Zr]
III

`?

`?

Pr]

ψIV

`?

`?Pr]

Pr `?

ψ

`?
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Combination of abstractions

Under these assumptions, (r](V ]), Pr] ◦ψ, Pr] ◦ F] ◦ Zr]) is an abstraction of
(V,F),
as proved in the following commutative diagram:

F

F Pr

IV

Pr II

ψ

Pr]

IV

I

Zr]

ψ

Pr]F]

III

ψ ψ

Pr]
Pr]

IV
ψ

Pr

`?

`?

`?

`?
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A species

E

R R

E

l

r
r

l

r
r

E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule

E

R

E

R
l

r r

l

r r

E(r), R(l,r)←→ E(r!1), R(l!1,r)
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Internal state

E

R

E

R
l

r

p
l

r

Y1 Y1

u

R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Don’t care, Don’t write

R
u

R
p

Y1

r

Y1

r

6=

R
u

R
p.

Y1 Y1
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Embedding

RR R

Φ

Φ

E E

Z Z ′

r

l

Y48

r

l

r

r

We write ZCΦ Z ′ iff:
• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).
• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Requirements

1. Reachable species
A set R of connected site-graphs such that:

• R is finite;
• R contains at most one site-graph per isomorphism class;
• R is closed with respect to rule application: i.e. applying a rule with

a tuple of site-graphs in R gives a tuple of site-graphs in R;

2. Rules are associated with kinetic factors

• the unit depends on the arity of the rule as follows:( L
mol

)arity−1

· s−1

where arity is the number of connected components in the lhs.
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Differential system

Let us consider a rule rule: lhs→ rhs k.

A ground instanciation of rule is defined by an embedding φ between lhs into
a tuple (ri) of elements in R such that:

1. φ is mono;

2. φ preserves disconnectiveness.

and is written: r1, . . . , rm → p1, . . . , pn k.

For each such ground instantiation, we get:

d[ri]

dt

−
=
k ·
∏

[ri]

SYM(lhs)
and

d[pi]

dt

+
=
k ·
∏

[ri]

SYM(lhs)
.

where SYM(E) = ]{Φ | ECΦ E}.
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Abstract domain

We are looking for suitable pair (V ], ψ) (such that F] exists)

The set of linear variable replacements is too big to be explored.

We introduce a specific shape on (V ], ψ) so as:

• restrict the exploration;

• drive the intuition;

• having efficient way to find suitable abstractions (V ], ψ)

and to compute F].

Our choice might be not optimal, but we can live with that.
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Partial species

Fragments are well-chosen partial species.

A partial species X ∈ P is a connected site-graph such that:

• the set of the sites of each node of type A is a subset of the set of the
sites of A;

• sites are free, bound to an other site, or tagged with a binding type.

For instance:

So

G Sh R

d

a Y7 rb pi Y48

G(b!d.So,a!1),Sh(Y7!1,pi!2),R(Y48!2,r)
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Contact map

G
E

R

Sh

So

r

r

Y7

pi

b

a

Y68

l

d

Y48
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Annotated contact map

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Fragments and prefragments

A prefragment is a connected site-
graph which can be annotated with a
binary relation → over the sites, such
that:

1. There would be a site which is
reachable from each other sites,
via the reflexive and transitive
closure of→;

2. Any relation over sites can be
projected over a relation on the
annotated interaction map.

A fragment is a maximal prefragment
(for the embedding order).

GSo

G
E

R

Sh

So

abd

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

It is maximally specified.
Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G

Shd b a

Y7

b

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G

Shd b a

Y7

b

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
abd bb Y7

It can be refined into another prefragment.
Thus, it is not a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7bd bb

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7bd bb

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

It can be refined into another prefragment.
Thus, it is not a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

It is maximally specified.
Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a

Jérôme Feret 63 Monday, July the 11th



Are they fragments ?

GSo
abd

yes
So G

Shd b a

Y7

b

no
So G Sh

a Y7bd bb

no
So G Sh

a Y7d b pi

yes

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Basic properties

Property 1 (prefragment) The concentration of any prefragment can be ex-
pressed as a linear combination of the concentration of some fragments.

We consider two norms || · || on V → R+ and || · ||] on V ] → R+.

Property 2 (non-degenerescence) Given a sequence of valuations
(xn)n∈N ∈ (V → R+)N such that ||xn|| diverges toward +∞, then ||φ(xn)||

] di-
verges toward +∞ as well.

Which other properties do we need so that the function F] can be defined ?
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Fragments consumption
Proper inter

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is consumed by this rule (above)?
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Fragments consumption
Proper intersection

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

No, because we have abstracted away the correlation between the state of
the site r and the state of the site l.
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Fragments consumption
Proper intersection

ShRShR

ShR

r

r

r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Whenever a fragment intersects a connected component of a lhs on a modi-
fied site, then the connected component must be embedded in the fragment!
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Fragment consumption
Syntactic criteria

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����� R

Sh

G
E

R

Sh

G
E

R

Sh

So

Y48

Y7

pi

r
r

r

pi

b

l

d

Y48

Y68

Y7

a

rb

d

a

pi

Y7

r

l

Y48

Y68

We reflect, in the annotated contact map, each path that stems from a tested
site to a modified site (in the lhs of a rule).
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Connected components
Prefragment

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

We need to express the “concentration” of any connected component of a lhs
with respect to the “concentration” of fragments.
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Connected components
Prefragment

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

Each connected component of a lhs must be a prefragment. Blapcsqldcld-
cjldclkdcnNlkcdmdsmcdCD.
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Connected components
Syntactic criteria

R
G

E

R

Sh

G
E

R

Sh

SoSh

pi

r

Y48

Y48

Y7

Y7

r

r

pi

b

l

d

Y68

a

rb

d

a

pi

Y7

r

l

Y48

Y68

l

For each connected component of a lhs, there must exists a site which is
reachable from all the other ones.
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Fragment consumption

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

For any rule:
rule : C1, . . . , Cn → rhs k

and any embedding between a modified connected component Ck and a frag-
ment F, we get:

d[F]

dt

−
=

k · [F] ·
∏

i 6=k [Ci]

SYM(C1, . . . , Cn) · SYM(F)
.
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Fragment production
Proper inter

E
R

GRGR

R
G

aa

a

r

l

p
r

r

bY68bY68

p p

Y68

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is produced by the rule (above)?
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Fragment production
Proper intersection (bis)

E
R

GRGR

R
G

E R E R

aa

a

r

l

p
r

r

bY68bY68

p p

Y68

l

r

r

r r

r
l

r

Yes, if the connected components of the lhs of the refinement are prefrag-
ments. This is already satisfied thans to the previous syntactic criteria.
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Fragment production
Proper intersection (bis)

GRGR

E R E R

aa bY68bY68

p p

l

r

r

r r

r
l

r

For any rule:
rule : C1, . . . , Cm → rhs k

and any overlap between a fragment F and rhs on a modified site,
we write C ′1, . . . , C

′
n the lhs of the refined rule;

if m = n, then we get:

d[F]

dt

+
=

k ·
∏

i

[
C ′i

]
SYM(C1, . . . , Cm) · SYM(F)

;

otherwise, we get no contribution.
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Fragment properties

If:

• an annotated contact map satisfies the syntactic criteria,

• fragments are defined by this annotated contact map,

• we know the concentration of fragments;

then:

• we can express the concentration of any connected component occur-
ing in lhss,

• we can express fragment proper consumption,

• we can express fragment proper production,

• WE HAVE A CONSTRUCTIVE DEFINITION FOR F].
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Experimental results

Model early EGF EGF/Insulin SFB

#species 356 2899 ∼ 2.1019

#fragments
38 208 ∼ 2.105

(ODEs)

#fragments
356 618 ∼ 2.1019

(CTMC)  0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6

C
on

ce
nt

ra
tio

n

Time

/home/feret/demo/egfr-compressed.ka

(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

Both differential semantics
(4 curves with match pairwise)
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Related issues I: Semantics comparisons

this talk!

refinements

Species−based semantics Rule−based semantics Abstract semantics

limit limit

refinements

another talk!

]

C
T
M
C

O
D
E

⊆

⊆

]
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Related issues II:
Semantics approximations

1. ODE approximations:

• Concrete definition of the control flow and hierarchy of abstractions.
A notion of control flow which would be invariant by:

-- neutral rule refinement;
-- compilation of a Kappa system into a Kappa system with only

one agent type.

Joint work with Ferdinanda Camporesi (Bologna)
2. Stochastic semantics approximations:

• Can we design abstraction ?
• Find the adequate soundness criteria.

Joint work with Thomas Henzinger (IST-Vienna), Heinz Koeppl (ETH-
Zurich), Tatjana Petrov (EPFL)
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Call for participation

Second Workshop on Static Analysis and Systems Biology
(SASB 2011)

(co-chaired with Andre Levchenko)
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http://www.di.ens.fr/sasb2011

Invited speakers:

• Boris Kholodenko

• Edda Klipp

• Jean Krivine
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